If it's not what You are looking for type in the equation solver your own equation and let us solve it.
78n^2+12n=0
a = 78; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·78·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*78}=\frac{-24}{156} =-2/13 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*78}=\frac{0}{156} =0 $
| 9x4 (9-8) = 4x+6 | | 3c-8=-4c+20 | | 74n^2+12n=0 | | 6a+3=8a-41 | | 5(4x+1)=3(2x+11) | | -4(2x+1)-8(2x-6=-28 | | (6+3x)=48 | | 4x+7=-3+49 | | 31=4(2+x) | | 3y+12=3*(4+y) | | 15+(5-x÷x)=30 | | 0.2x-5-10.6=14 | | y+6=2y | | 1.75-0.75m=4.75 | | 2z/9-6=9 | | -4(7x+8)-8=128 | | -10.8q+1.6=-42.9-1.9q | | 5x+13=2x-16 | | (x+9)/6=2/3+(x-4)/2 | | 3n+6=n+14 | | -10.8q+1.6=-42.9-1.9 | | 2(6+3x)=2(3x)+x | | x+.11x=25 | | (5x+3)*7+1=41 | | x=-3.5(x+4)3x-0.5 | | (2-2x)*2=18 | | -30=-9a-3 | | 5m+20=2m+40 | | 5x-8=9x+6 | | 14+4a=38 | | 3z/10+1=-4 | | -8=-3b+4b |